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Flow in deformable porous media. Part 2 
Numerical analysis - the relationship between 

shock waves and solitary waves 
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Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY 10964, USA 

(Received 25 February 1991 and in revised form 14 July 1992) 

Using numerical schemes, this paper demonstrates how viscous resistance to volume 
changes modifies the simplest shock wave solutions presented in Part 1 .  For an initial 
condition chosen to form a step-function shock, viscous resistance causes the shock 
to disperse into a rank-ordered wavetrain of solitary waves. Large obstructions in 
flux produce large-amplitude, slow-moving wavetrains while smaller shocks shed 
small-amplitude waves. While the viscous resistance term is initially important over 
a narrow boundary layer, information about obstructions in the flux can propagate 
over many compaction lengths through the formation of non-zero wavelength 
porosity waves. For large-amplitude shocks, information can actually propagate 
backwards relative to the matrix. The physics of dispersion is discussed and a 
physical argument is presented to parameterize the amplitude of the wavetrain as a 
function of the amplitude of the predicted shock. This quantitative relationship 
between the prediction of shocks and the development of solitary waves also holds 
when mass transfer between solid and liquid is included. Melting causes solitary 
waves to decrease in amplitude but the process is reversible and freezing can cause 
small perturbations in the fluid flux to amplify into large-amplitude waves. These 
model problems show that the equations governing volume changes of the matrix are 
inherently time dependent. Perturbations to steady-state solutions propagate as 
nonlinear waves and these problems demonstrate several initial conditions that do 
not relax to steady state. If these equations describe processes such as magma 
migration in the Earth, then these processes should be inherently episodic in space 
and time. 

1. Introduction 
Simple analysis described in Part 1 (Spiegelman 1993) shows that the equations 

governing the volume changes of a viscously deformable permeable medium describe 
a nonlinear wave equation for the evolution of porosity. This analysis also shows that 
many simple initial conditions will develop porosity shock waves in the absence of 
viscous resistance of the matrix to volume changes. I n  the vicinity of a rapid change 
in the melt flux, however, viscous stresses in the matrix cannot be negligible. This 
paper continues the analysis using numerical methods and demonstrates that viscous 
resistance to volume changes causes simple shocks to disperse into trains of solitary 
waves. 

To date there has been little success in obtaining analytic solutions to the full 
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nonlinear equations for non-steady-state initial conditions.t Because the solitary 
waves do not appear to be solitons (Barcilon & Richter 1986), it is not clear that an 
exact analytic method for general initial conditions, such as the inverse scattering 
transform, exists for these equations. Therefore, until adequate approximate 
techniques are developed, we must rely on accurate numerical methods. 

The governing equations in potential form (Part 1,  (18)-(20)) can be solved using 
standard numerical techniques. This paper uses finite-difference schemes for one- and 
two-dimensional problems. To maintain second-order accuracy and minimize 
numerical diffusion, we use a staggered leapfrog scheme to update the porosity via 
(18) of Part 1 .  Equation (19) is solved by tridiagonal elimination in one dimension 
and by alternating-direction-implicit (ADI) relaxation in two dimensions. These 
differencing schemes are described in detail in Press et al. (1986). The problems 
presented in this paper are solved using the small-$, approximation (Part 1) in order 
to simplify the analysis of the characteristic solutions and the solitary waves. For 
porosities well below the limit where the solid matrix disaggregates ($, 5 20%), 
inclusion of the terms of order $, does not change the criteria for shocks to form or 
modify the elliptic viscous resistance term. Barcilon & Richter (1986) compare the 
solutions for one-dimensional solitary waves in the full equations and in the small- 
$, approximation. They show that the differences between the two solutions are 
negligible ( -  1 %) for waves with maximum dimensional porosities less than 30%. 
In  two dimensions, the $,, terms will cause matrix convection which can be included 
using standard Poisson and biharmonic solvers. For accuracy and resolution, 
however, this paper restricts quantitative solutions to one dimension. 

The numerical schemes have been tested against the analytic solution for solitary 
waves with permeability exponent n = 3 in the limit that $,, + 1 (Scott & Stevenson 
1984; Barcilon & Richter 1986). Results of these tests are given in Appendix A and 
show that the numerical schemes can accurately resolve the solitary waves. The 
amplitude of well-resolved waves remains within 0.1 % of the analytic value. Errors 
in phase velocity are less than 0.2% of the true value. These numerical errors are 
much smaller than any of the variations in amplitude or velocity seen in the 
numerical calculations. 

2. A comparison between characteristic and numerical solutions : one 
dimension, no melting 

The effect of viscous resistance to volume changes is readily explored by 
comparing numerical solutions of the full equations to analytic solutions of the zero- 
compaction-length approximation. The only difference between these two sets of 
equations is the elliptic term, V + k ,  V%, in (18) of Part 1 (where k ,  is the permeability 
and %' is the compaction rate). This section demonstrates qualitatively that the zero- 
compaction-length approximation is relatively accurate for problems where viscous 
resistance is transient. For initial conditions where shocks are predicted, however, 
viscous resistance t o  volume changes causes the shocks to disperse into a series of 
nonlinear solitary waves. 

As an example of a problem where the zero-compaction-length approximation is 
valid, consider the compaction of a constant-porosity half-space onto an impermeable 
surface. This problem relaxes to a steady state without developing shocks, and has 

t The major analytic success for these equations has been for waveforms of permanent form and 
constant phase velocity. Under these requirements, the equations can be transformed to steady 
state ODES in the new variable z' = z - ct and solved by standard techniques. 
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FIGURE 1. A comparison of full and approximate solutions for the time-dependent compaction of 
a constant-porosity layer onto an impermeable surface. Dimensionless porosity profiles are shown 
a t  time intervals of t = 2 (non-dimensional) to t,,, = 20. Both solutions use a permeability 
exponent of n = 3, and assume $,, 6 1. Solid curves show the numerical solution of the full 
equations including viscous resistance to volume changes. Shaded curves show the analytic 
approximate solution given by the method of characteristics. For t 2 10 this solution is very close 
to the numerical solution. Both solutions relax smoothly towards steady state. 

been discussed a t  length by McKenzie (1984). Numerical solutions are given by 
Richter & McKenzie (19841, and Richter (1986). In  figure 1 ,  a numerical solution of 
the full equations is compared to an analytic solution of the approximate equations 
for a layer that is 50 compaction lengths deep. For the analytic solution, the initial 
porosity distribution, $i(z), evolves along straight characteristics with phase velocity 
v4 = 3@. Thus, the position of the initial discontinuity with time is simply 3t.  For 
times greater than t - 10, the two solutions are nearly indistinguishable while a t  
earlier times more significant differences are seen. In  particular, the numerical 
solution, which includes viscous resistance, is retarded relative to the analytic 
solutions. This is because viscous resistance to volume changes will be most 
important where the gradient of the melt flux is large. The elliptic term affects the 
early evolution of porosity but becomes negligible with time. For a smoother initial 
porosity profile, the two solutions are nearly identical a t  all times. 
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FIGURE 2.  Characteristic and numerical solutions for the evolution of porosity from an initial 
condition that develops into a perfect step-function shock at time t, = 2 in the zero-compaction- 
length approximation. The dotted lines show the analytic shock solution to  the approximate 
equations. After t = t , ,  this shock travels as a perfect step with #,,, = 1, = 0.2 at constant 
velocity c, = 1.24. The solid lines show the numerical solution to the full equations for the same 
initial condition. Until t = t, the full and approximate solutions are comparable. For t  2 t,, viscous 
resistance causes the shock to disperse into a series of porosity maxima and minima. In this 
example, the leading porosity wave travels slower than c, ( c  - 0.8) and each new wave forms further 
back relative to the matrix. 

When shocks are predicted, however, the behaviour of the solution of the full 
equations is significantly different. An initial condition that develops into a simple 
shock is 

z < 0, 

$ = [l - ( z / h )  (1 - $:-l)]l’(n-l), 0 < z < A,  ( 1 )  (6; z > A. 

In the absence of viscous resistance t o  volume changes, this initial condition develops 
a perfect step function at  time t, = A/[n(l -$;-l)]-as long as n > 1 .  This step has a 
maximum dimensionless porosity of # = 1, a minimum porosity $ = $1 and a 
constant, phase velocity, c, = (1 -$T)/(l-q5,) (see Part 1, figure 4). Note, for all $1 

between 0 and 1, the shock always travels faster than the fastest melt velocity even 
as + O .  

= 0.2, n = 3, t ,  = 2 ($o < 1) .  
Because porosity remains constant on characteristics (if there is no melting), porosity 

Figure 2 shows the shock solution (shaded line) for 
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gradients may steepen but the maximum porosity cannot grow. Moreover, because 
the zero-8 approximation has no intrinsic lengthscale, the initial variation in the flux 
remains localized to a single shock. When viscous resistance of the matrix to volume 
changes is included, however, the behaviour of the solution is quite different. The 
solid line in figure 2 is the numerical solution for the evolution of the identical initial 
condition superposed on the shock solution. Up to the time of shock formation the 
two solutions are similar. However, when the flux varies on a lengthscale comparable 
to the compaction length, the forward progress of the shock is retarded and the 
excess flux accumulates in a local porosity maximum. Rather than growing into a 
single ‘bow wave’ however, the growth of the maximum produces a region where 
locally the flux increases’ in the direction of flow. This rapid increase in flux drains 
melt from the region immediately upstream, producing a local porosity minimum 
where # < 1. This new minimum becomes a second obstruction in the flux which 
initiates a second maximum and so on. The end result is that the simple shock 
disperses into a growing train of non-zero-wavelength porosity waves. I n  this case 
the wavetrain actually grows faster than the leading wave moves forward, causing 
information to propagate backwards relative to the matrix. This back-propagation 
of information becomes more pronounced in calculations that are carried out to 
greater times. 

This comparison illustrates that the elliptic compaction term can cause porosity 
both to increase and decrease and allows information about variations in the melt 
flux to propagate away from the area of the initial obstruction in flux. Section 3.2 
shows that this behaviour is consistent with the form of the governing equations. 
Before considering the physics of dispersion, however, it is useful to investigate the 
evolution of this simple initial condition more quantitatively. The next section shows 
that these porosity waves, when well formed, behave as the solitary waves described 
by several authors (Scott & Stevenson 1984; Richter 6 McKenzie 1984; Barcilon & 
Richter 1986). The next problem also shows that dispersive wavetrains form for all 
numerically resolvable initial conditions with a single jump in the melt flux. We then 
quantify the relationship between the size of the obstruction and the amplitude of 
the solitary waves that are produced. 

3. Quantifying the relationship between shocks and solitary waves: one- 
dimensional step shocks, no melting 

The initial condition for this problem 

is similar to ( 1 )  except that the initial step has been smoothed slightly ( A  = 2.5)  to 
minimize numerical artifacts encountered a t  long times that arise from discontinuous 
and piecewise-continuous initial conditions. Without viscous effects, this initial 
condition would also evolve into a travelling step function shock after a short 
adjustment period in which the shock coalesces. Note that for a fixed permeability 
exponent n and in the limit of small porosity, the properties of the shock are 
determined by a single parameter, the minimum porosity The properties of the 
dispersive porosity waves must also be only a function of as the term governing 
viscous resistance contributes no new adjustable parameters. Solutions were 
calculated for = 0.1-0.9 to a dimensionless time of t = 80, which is sufficient for 
well-developed wavetrains to form. The boundary conditions are constant porosity 
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(rigid) with $(0) = 1, q5(zmax) = g51 and V(0) = V(zmax) = 0. As long as the porosity 
waves remain at least a few compaction lengths away from the boundaries, this 
boundary condition reduces to a constant-flux boundary. The boundaries are 
deliberately placed far from the regions of rapid flux variation to avoid edge effects. 

3.1. Results 

Figure 3 shows porosity profiles as a function of time for minimum porosities 
q51 = 0.2,0.5,0.8.  Rather than developing into a discrete porosity front, this solution 
produces a rank-ordered, dispersive, wavetrain of porosity waves for all values of 
While these waves are not ‘solitary’ (i.e. well separated), the best developed waves 
obey the same dispersion relationship as solitary waves of the same amplitude. 

I n  more detail, figure 4 shows the distribution of amplitudes of the porosity 
maxima for each value of a t  t = 80. Figure 4(b)  shows the amplitude of the leading 
wave with time. At late times, the rank ordering of the wavetrain is clear with 
amplitudes of well-developed waves ranging between - f 10-20% of the mean 
value. The amplitude of the wavetrain is not constant ; therefore, this solution is not 
the periodic wavetrain solution of Olson & Christensen (1986). Close examination of 
a series of conduit wave experiments by Scott & Stevenson (1986) that are similar to 
those of Olson & Christensen (1986) seem to show a definite rank ordering as well. The 
time dependence of the leading wave (figure 46) is similar for all values of and 
shows a rapid growth at early times followed by a long period of very slow growth. 
For the duration of the calculations shown here, the growth rate of the leading wave 
is always slightly positive. However, as the different waves move a t  different speeds 
(see below), the leading wave may stop growing if it separates from the rest of the 
wavetrain. 

In  addition to the amplitude, the phase velocity of these waves is time dependent. 
For well-developed waves, however, the instantaneous velocity of the porosity 
maximum approaches that of the solitary wave with amplitude A(t). Figure 5 ( a )  
shows the phase velocity of the leading wave as a function of time. Each cross is the 
measured velocity of the porosity maximum calculated by the centred difference 

, (3) 
z,(t + A t )  -z,(t - A t )  

2At 
q t )  = 

where zp is the position of the leading wave crest and At = 2 is the sampling time. For 
each value of q51, the continuous curve shows the theoretical phase velocity for the 
solitary wave of amplitude A(t )  with permeability exponent n = 3 and $,, < 1. The 
dispersion relationship for these waves is given in Scott & Stevenson (1984) and 
Barcilon & Richter (1986); however, in these papers it is convenient to scale the 

FIGURE 3. Evolution of it single smoothed step in porosity (n  = 3, $o < 1). In  the absence of viscous 
dispersion, this initial condition, (2), wolves to a travelling step-function shock with maximum 
porosity $,,, = 1 and minimum porosity = Viscous resistance to volume changes, 
however, causes the step to disperse into a rank-ordered dispersive wavetrain of solitary waves. For 
each value of$,, (a )  shows porosity profiles vs. time for t = 6 8 0 ;  ( b )  and (c) show superposed initial 
( t  =,0) and final ( t  = 80) profiles for compaction rate and porosity. All finite-difference grids have 
4472 grid points/compaction length. The large-amplitude shock = 0.2) develops into a large- 
amplitude, slow-moving, back-propagating wavetrain. The smaller obstruction = 0.5)  develops 
smaller-amplitude, faster wavetrains (note the difference in scales) with all new waves initiating 
near z = 40. The smallest obstruction (9, = 0.8) produces a small-amplitude, fast-moving, forward- 
propagating, wavetrain. 
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FIGURE 4. Amplitude variation of the dispersive wavetrain as a function of the minimum 
porosity (a) Rank ordering of the wavetrains at t = 80. x , the amplitude of the porosity 
maxima in the wavetrain; 0, the mean amplitude of the wavetrain. The dashed line is the 
amplitude of the solitary wave that travels at the same speed as the shock predicted in the zero- 
compaction-length approximation. For $, < 0.5, this argument significantly overestimates the 
amplitude of the wavetrain. The solid line is the relation for A($, )  as calculated by the physical 
argument of $3.3. ( b )  Amplitude of the leading wave as a function of time. 
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FIGURE 5. Variation of phase speed of the dispersive wavetrain as a function of 4, and amplitude. 
( a )  Measured and theoretical phase speed of the leading porosity wave as a function of time : x , 
the measured velocity of the leading wave at time t ; the continuous line is the phase speed of the 
analytic solitary wave with the same amplitude A @ ) .  For dimensionless times t 2 20 the leading 
wave velocity is indistinguishable from the theoretical value. (a) Distribution of phase velocity and 
amplitude for all well-developed waves at  t = 78 : + , the measured phase speed and amplitude of 
each porosity maximum ; the short, straight lines are the theoretical dispersion relations for solitary 
waves, c(A, 4,) ; 0,  the mean amplitude and phase speed of the wavetrain ; the dashed curve shows 
the speed and amplitude of the solitary wave that travels at the speed of the predicted shock. For 

< 0.5, this argument grossly overestimated andc for the wavetrain. The solid curve is therelation 
for c(A(q5,)) as calculated by the physical argument of $3.3.  

porosity and velocity to the small background porosity. The dispersion relation 
corresponding to the scaling used here for the initial step in porosity is 

Figure 5 ( a )  shows that for all values of and for times t X 20, the phase velocity 
of the leading wave is indistinguishable from the theoretical phase velocity of the 
solitary wave. This match between the analytic and numerical phase velocities is a 
good indication that the waves are well resolved. 
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A t  late times, the leading wave behaves as a solitary wave of amplitude A ( t )  

moving over the uniform background porosity q51. This feature is also true of the 
other well-developed waves in the train. Figure 5 ( b )  shows the measured phase 
velocity of porosity waves as a function of their amplitudes. Each plus sign marks the 
measured phase velocity calculated by (3) a t  t = 78. The short, straight line through 
the symbols is the dispersion relationship given by (4). Well-developed waves travel 
near the velocity of solitary waves while poorly developed waves travel more slowly 
than the solitary wave with the same amplitude.? Figure 5 ( b )  also shows that this 
wavetrain is dispersive in the strict sense that each wave composing the train moves 
a t  a different velocity. Thus, there is no frame in which this solution appears to be 
in steady state. This result further demonstrates that this solution is not the periodic 
wavetrain of Olson & Christensen as their solution travels a t  constant phase velocity. 
It is not clear whether parts of the wavetrain would evolve towards a periodic 
solution a t  long times; however, the next section shows that there are no solutions 
of constant velocity and permanent form that satisfy the boundary conditions used 
here. 

Perhaps the most important result of this model problem is the relationship 
between the properties of the wavetrain and the size of the jump in the melt flux (or 
the value of the minimum porosity Large jumps in the initial flux develop into 
large-amplitude slow-moving wavetrains, while smaller obstructions produce 
smaller-amplitude fast-moving trains. This result is physically reasonable because a 
larger obstruction in the melt flux (smaller causes more melt to accumulate in the 
leading waveform and makes it more difficult for the porosity to propagate into the 
region of small porosity. The next section shows that, in the limit that the 
obstruction becomes impermeable + 0 ) ,  porosity cannot move into an im- 
permeable region but must accumulate a t  the boundary until the amplitude of the 
wave -+ 00 or the matrix disaggregates. For all numerically resolvable values of 
the excess upstream melt flux is always accommodated in a series of non-zero- 
wavelength porosity waves; therefore, the wavetrain grows in length with time. If 
the phase velocity of the leading wave is slower than the growth rate of the 
wavetrain, then each new wave forms further and further back relative to the 
matrix. This ‘back-propagation’ can be seen clearly in figure 3 for = 0.2. Each of 
the solitary waves actually moves forward; however, it  is information about 
variations in melt flux that moves backwards. Back-propagation of information is a 
ubiquitous feature of this solution for problems with $1 5 0.5 but is most noticeable 
for small 2 0.5, the well-developed waves move forward faster than the 
wavetrain grows. For = 0.8, the region near the original shock front ( z  - 60-120) 
eventually approaches a steady state with q5 = 1.  The back-propagation appears to 
be robust and may have significant implications for the long-term behaviour of flow 
in deformable porous media. Inspection of figure 3 shows that if the wavetrain 
continues to grow indefinitely, then the region near the initial obstruction ( z  2 50) 
will never go to steady state. More generally, information about obstructions in the 
flow a t  boundaries can propagate into the interior with unknown results. 

For 

3.2. Fidelity of solution and simpEe physics of dispersion 
The general behaviour of this solution appears to be a growing, dispersive train of 
porosity waves that behave locally as solitary waves. It is important, however, to 

t It should be noted that the phase velocity (4) depends only on A and the minimum porosity 
Inspection of figure 3 shows that, except for the leading wave, the minimum porosity 

immediately preceding each wave can be significantly greater than Thia limited interaction 
between waves is typical of the solitary waves (Scott & Stevenson 1984; Rarcilon & Richter 1986). 
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demonstrate that these results are accurate and consistent with the form of the 
governing equations. Numerically, these results are robust. Changing the grid size, 
time step, n and even the numerical scheme does not alter the rank ordering, 
dispersion and back-propagation of solitary waves. The leading porosity waves have 
already been shown to behave as solitary waves and these codes can accurately 
reproduce the analytic solitary wave solutions to within 0.2% in amplitude and 
velocity (see Appendix A). Figure 5 ( b )  shows that in amplitude and phase velocity, 
the results of the different runs are completely distinct and that even numerical 
errors of the order of a few percent within a given run will not change the overall 
relationship bet ween runs. 

It is also possible to show that some of the features of these solutions, such as the 
lack of permanent form, the formation of porosity extrema, and rank ordering are 
consistent with the form of the governing equations and boundary conditions. 
Following the analysis of Barcilon & Richter (1986) for one-dimensional solitary 
waves with n = 3 and $,, < 1,  Appendix B shows that no solutions of permanent form 
and constant phase velocity exist which satisfy the boundary conditions 

1 $(a) = $1, $(-a) = 1,  

q00) = 0, %(-a) = 0, 

Wz(cO) = 0, %J - 00) = 0, 

if $(a) + q5( - 00) (i.e. solitary waves are the only waveform of permanent shape and 
constant speed where the compaction rate ‘3 vanishes at f 00). 

To show that the elliptic compaction term produces porosity extrema and causes 
information to propagate away from the shock, consider the initial compaction rate 
field for a step in porosity. Figure 6(a)  shows a step decrease in porosity where 
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q$ = 1 for z < 0 and q5 = for z > 0. Given this initial condition, neglecting melting 
and assuming q5,, 4 1, the one-dimensional Compaction rate equation (Part 1, 
equation (42)) a t  t = 0 becomes 

where 6, = is the compaction length in the region z > 0. Using the boundary 
conditions that the compaction rate vanishes a t  & 00,  together with the matching 
condition that %‘ (and the melt flux) is cont,inuous at z = 0, and the global mass 
conservation constraint that 

(7)  JImwdz = lym-G$(t- a ~ ) d z  = (1  -$;I 

equations (6) have solutions 

Figure 6 ( a )  shows profiles of #, GK, and the separation flux q = k+(Wz- 1) for. n = 3, 
= 0.5. While the porosity is discontinuous, the flux varies smoothly. Moreover, 

the compaction rate is finite and is distributed in two decaying exponentials both 
upstream and downstream of the shock. In these simple problems, W = aq5/at; 
therefore, the initial evolution of this step will be for porosity to grow locally around 
the shock. The larger the jump in flux, the greater the maximum growth rate, gma,, 
and the more that this growth occurs behind the shock front. As --f 0, the growth 
rate a t  the shock approaches a maximum, all of the growth occurs upstream of the 
shock, and the waveform cannot propagate into the impermeable region. These 
results should be compared to the zero-compaction-length approximation where 
both the porosity and the flux are discontinuous, and the compaction rate is simply 
a travelling Dirac delta function GK = (1  -4:) S(z-c,  t ) .  Moreover, in the zero- 
compaction-length approximation, shocks can propagate even into impermeable 
regions. This analysis shows that viscous stresses distribute the effects of rapid flux 
changes away from the shock, can produce local maxima, and provide a physical 
mechanism for both forward and backward propagation of porosity variations. 

The preceding argument shows that the pressure gradients due to viscous volume 
changes of the matrix causes a porosity maximum to develop around a step decrease 
in porosity. The key to  forming dispersive wavetrains, however, is the ability for 
local porosity minima to  form directly behind the flux maximum. If we reverse the 
direction of the porosity jump and let z + - x (figure 6 b ) ,  then the same analysis used 
to derive (8) shows that an initial step increase in porosity will lead to  a local 
minimum as the rapid increase in flux drains melt from the low-porosity region 
upstream. While this analysis is too simple to show that a dispersive wavetrain of 
solitary waves is the preferred solution for this initial condition, it suggests that the 
elliptic term produces an oscillating porosity profile by alternately obstructing and 
draining regions of variable flux. This suggestion is supported by close examination 
of figure 2. T t  should also be noted that without melting or matrix shear, the only 
waveform that propagates without growing is one where the melt flux increases 
linearly with porosity ( % ~ i 3 # / a z ) .  Appendix B shows that this property is an 
alternative definition for the solitary waves. 



50 M ,  Spiegelman 

Finally, the apparent rank ordering of the wavetrains is consistent with the weak 
constraint provided by (7) that  the integral of the compaction rate must be constant 
and positive for the boundary conditions of this problem. Thus, if V oscillates about 
zero (figure 3) ,  the compaction rate in expanding regions must be somewhat larger 
than in compacting regions. A series of well-separated solitary waves have s W - 0 
because %' is antisymmetric in a solitary wave (indeed V = -c$,). The integral of the 
compaction rate also vanishes for the periodic wavetrains of Olson & Christensen 
(1986). 

3.3.  A simple physical argument for A(#,)  
The preceding arguments support the observation that viscous resistance of the 
matrix to volume changes causes larger obstructions to produce larger slower- 
moving solitary waves. This analysis, however, is not sufficient to predict the 
amplitude of the solitary waves that eventually develop. Ideally, a method 
analogous to the inverse scattering transform for solitons would be of great use for 
calculating the evolution of arbitrary initial conditions. These solitary waves, 
however, are not solitons and it is not clear that such a method exists. This section 
presents a simple physical argument based on conservation of mass that reproduces 
much of the trends of figures 4 ( a )  and 5 ( b )  surprisingly well. 

This argument is similar to that used to calculate the speed of the shock in the 
zero-compaction-length approximation. Now, i t  might be expected that the leading 
wave would simply grow to the solitary wave that moves at the phase velocity of the 
shock. If this were the case, then (4) and the shock speed for n = 3 give 

4 9 1 )  = (1  + 91)/291, = 1 + 91 + 9:. (9) 

This relationship is shown as the dashed curve in figures 4(a)  and 5 ( b ) .  While it is a 
reasonable approximation for the maximum amplitude and phase velocity for small 
shocks ($1 > 0.5), this argument overestimates the amplitude and phase velocity for 
$1 < 0.5 beyond any possible numerical error. It is interesting to note that the 
calculations that display back-propagation have maximum phase velocities 
c,,, < c, (although this may be coincidental). 

While the wavetrain does not move a t  the speed of the shock, it does appear to 
move with the mass of the shock. To show this, we extend the standard argument 
used to calculate the shock speed. Figure 7 summarizes the basic argument. Consider 
a perfect step-function shock a t  x = 0, t = 0. At time At, the characteristic solution 
actually predicts a breaking porosity wave (figure 7 a )  which is physically unrealistic 
as the porosity cannot be triply valued. The position of the shock front at time At is 
calculated in the standard way (Whitham 1974), by conserving mass and determining 
the position of the step function that contains the same volume of porosity as does 
the breaking wave (figure 7 b) .  The excess porosity in the breaking wave at t = At is 

V, = ( 1 - 9 T ) A t  (10) 

V, = ( l - # l ) ~ , A t .  (11) 

while the excess volume of a step function travelling at constant phase velocity c, is 

Setting the volumes equal yields the shock speed c, = (1  --$:)/( 1 
While a step function is a poor approximation to the porosity profile when viscous 

resistance is significant, this argument can be extended to find the amplitude of the 
solitary wave that contains the same excess volume as the breaking wave (figure 7c).  
The only uncertainty in this argument arises from the fact that the excess volume of 
the breaking wave depends on the time of formation At. Examination of figure 7 (c), 
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FIQURE 7. Schematic illustration of a simple physical argument to estimate the amplitude of 
solitary waves as a function of the amplitude of the predicted shock. All arguments assume an  
initial step function (&,, = 1, a t  t = 0. (a)  Characteristic ‘breaking wave’ solution. At 
t = At the excess porosity in the breaking wave is 1, = (1 -$ ; )A t .  This solution is unrealistic as 
porosity cannot be multiply valued. ( b )  Shock solution: the excess porosity V, is accommodated in 
a step-function shock that travels at the constant phase velocity c, = (1 -$y) / ( i  -$J. (c )  Scaling 
argument: solitary wave solution. Excess porosity is accommodated in a solitary wave of 
amplitude A .  The characteristic time for forming the solitary wave is approximately 
At = 2h(A)/c(A).  

= 

however, suggests that a reasonable estimate for At is the time it takes a fully formed 
wave to move its full wavelength. That is At z 2h/c, where h is an estimate of the 
half-wavelength of the solitary wave. Appendix B provides a reasonable definition of 
A. As the volume, wavelength, and speed of a solitary wave all depend on the 
amplitude A ,  q51, and n, setting the volume of the solitary wave equal to V, and fixing 
n yields the implicit relationship between A and : 

V ,  c and h have analytic expressions if n = 3 (Appendix B) and the relation A(#,) is 
readily found. This relationship is plotted in figures 4(a)  and 5(b ) .  Comparing it to 
the range of amplitudes produced a t  t = 80 shows that this argument provides a good 
estimate for the mean amplitude of the wave train. This argument is consistent with 
the basic behaviour of these solutions and conservation of mass. Until more 
sophisticated techniques are developed, this method forms a simple parameterization 
of the numerical results. 

4. Effects of melting 
The previous examples demonstrate how viscous stresses in the matrix cause a 

simple step shock to disperse into solitary waves when there are no melting source 
terms. These problems also show a simple physical correspondence between the 
prediction of shocks and the production of solitary waves for a step shock of 
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permanent form and constant speed. By including the effects of melting (and 
freezing) we can show that this relation is applicable even when the predicted shock 
has a time-dependent amplitude. While the solitary waves are no longer of 
permanent form, thc following example suggests that they simply adjust tJo local 
variatkms in melt flux. 

Sootion 4.5 of Part 1 describes how melting modifies the bchaviour of step-function 
shocks. The geometry of the model problem we consider here follows that of 
figure 7 of Part 1 ,  where an initial porosity step propagates into a nearly constant 
melting rate zone given by 

sech2 ( ( z -x , , ) /A ) ,  z < x o ,  1 sech2((z-z,)/h), z ,  < z .  

T(2) = ro 1, zo < z < z,, (13) 

Again, the discontinuous melting rate field has been smoothed slightly ( A  = 1 )  to 
avoid numerical artifacts. Given r,, and setting W, = 0, the porosity trajectories 
predicted by the zero-compaction-length approximation are 

(see figure 7 of Part 1 ) .  For this problem we fix (zm-zo) = 50, n = 3, = 0.2 and 
cahoose r, such that the shock would enter the melting zone with a minimum porosity 

and exit as a smaller-amplitude shock with a normalized minimum porosity, 
By choosing q5; such that 

q5; = limQmin(Z) = 0.2,0.3, ..., 0.8 
z+cc q5max(z) 

the results of this problem can be compared directly to those of $ 3  where there was 
no melting. Using (13) and (15), To is given by 

The initial conditions for the porosity in figure 8 are simply a superposition of the 
smoothed step given by (2), and cjhrnin(z). I n  the zero-S approximation, q 5 m l n ( ~ )  is a 
stable steady-state profile. Therefore, the melting zone and the region above should 
be initially in steady state. I n  this model problem, the wavetrain will develop as 
before for 25 compaction lengths and then enter the melting zone. Boundary 
conditions are free flux on both boundaries, which are placed far from regions of 
varying flux. 

4.1. Results 
Figure 8 shows the evolution of this initial condition for a small melting rate (4; = 

0.4) and a larger melting rate (& = 0.7). In  both cases, as each porosity wave moves 
through the melting region, its amplitude decreases while the wavelength and phase 
velocity increase. These effects are more pronounced for large melting rates. This 
behaviour is consistent with the effects of melting on shocks in the zero-compaction- 
length approximation. Figure 7 of Part 1 shows that, for this initial condition, 
melting decreases the amplitude of the shock, increases the minimum porosity (and 
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FIGURE 8. The effect of melting on the porosity waves. These plots show porosity profiles vs. time, 
as well as initial and final porosity and compaction rate profiles. (a) Porosity and compaction rate 
for a rapid melting rate (r, = 4.16 x lo-', y5; = 0.7). Melting occurs in a region 50 compaction 
lengths long between zo and z,. There is no melting outside this region. Therp are free-flux 
boundary conditions at z = 0 and 220. The figure is plotted to z = 150, however, for comparison to 
the slow melting solution. ( b )  Porosity and compaction rate profiles for a slower melting rate 
(I', = 4.88 x q5: = 0.4). In both calculations, the initial condition for z < zo is the same a8 in 
figure 3(a) .  Increasing the melting rate c a u s ~ s  waves to broaden, accelerate, and decrease in 
amplitude as they pass through the melting zone. The dashed curve is the steady-state solution for 
(b,,, calculated from the zero-S approximation. 

therefore the minimum compaction length) and increases the speed of the shock. 
Scott & Stevenson (1986) also note that melting causes solitary waves to decrease in 
amplitude. However, more careful analysis shows that the waves simply evolve to 
the waves that accommodate the local differences in fluid flux. 

Figure 9 (a )  shows the amplitude of the leading wave with time for various degrees 
of melting. While melting decreases the absolute amplitude of the porosity wave (as 
well as the resealed amplitude A' = A(z,t)/q5rnax(z)), the leading wave still behaves 
locally as a solitary wave. The theoretical phase velocity of a solitary wave of 
amplitude A(t) and minimum porosity q5min(zp) is 
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FIGURE 9. The effect of melting on the leading porosity wave. (a) Absolute amplitude of the leading 
wave as a function of time. Up to t - 16, all runs produce similar amplitudes. The overall decrease 
in amplitude is caused primarily by the decreasing difference in melt flux between &,, and $,,,. 
The small increase in amplitude for 6; = 0.8 is due to $,,, increasing faster than the step amplitude 
decreases. ( b )  Phase velocity of the leading wave as a function of time : x , the measured velocities 
of the leading porosity maximum (see figure 5a) ; the solid curve is the theoretical phase velocity 
of the solitary wave with amplitude A( t )  and minimum porosity $mln(zp(t)). (c) Renormalized 
amplitude of the leading wave, A’@) = Amax(z)/q5,,,~..(z), as a function of the renormalized minimum 
porosity, q5;(z) = $m,n(z)/$mJz). 4; = 0.2, ..., 0.8. 0, The amplitudes of the leading waves, 
Amax($J, a t  t = 80 from the previous calculations where there was no melting. A’(&) is similar to 
A ( $ J ,  for all melting rates. This result shows that porosity waves adjust to the local shock 
amplitude. The largest discrepancy occurs at large melting rates (4; = 0.8) when the leading wave 
just enters the melting region. I n  this region g5; changes rapidly and is underestimated. 

where zp is the position of the leading wave crest a t  time t. Figure 9 ( b )  compares the 
theoretical velocity with the measured phase velocity of the leading wave. Once the 
leading wave is well formed, the fit is quite good. Moreover, the leading wave appears 
to adjust to the solitary wave that corresponds to  the local shock amplitude. In the 
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FIGURE 10. The effect of freezing on porosity waves. This geometry is similar to that of figure 8 
bnt, i s  reversed so that a small shock with 9; = 0.7 enters a constant-freezing-rate zone that extends 
from zo-zz,, (r, = -4.16 x lo-', q-z, = 50) and exists as a shock with = 0.2. This plot shows 
porosity profiles vs. time. As the porosity trajectories decrease and diverge, the amplitude of the 
solitary waves increases while their wavelength and velocity decrease. Note the back-propagation 
of large-amplitude solitary waves near the top of the freezing zone. 

previous solution, where there was no melting, the amplitude of the leading wave 
depended only on the minimum porosity If this relationship applies when the 
predicted shock amplitude is time dependent, it  is expected that w .Amax($,) 
where 

This relationship is shown in figure 9 ( c )  for the leading wave. In  nearly all the 
calculations, A'(&) is within a few percent of Amax($l). The largest discrepancies 
occur a t  higher melting rates near the base of the melting zone where g5min increases 
rapidly over a few compaction lengths. However, as long as melting causes the flux 
to change over a lengthscale larger than the wavelength of the solitary waves, then 
the waves appear to behave ' adiabatically '. 

4.2. Effects  of freezing 

I n  the zero-compaction-length approximation, the porosity trajectories $ ( z ,  qm) for 
melting and freezing are identical under the transformation T-t-T and Z+-Z.  

Thus, for many problems, the effects of freezing should simply be the reverse of those 
caused by melting. Figure 7 of Part  1 shows the behaviour of a shock with minimum 
porosity passing through a melting zone. By simply reversing the direction of 
motion, this figure would just as easily demonstrate a shock of minimum porosity & 
moving into a freezing zone. Figure 10 shows this initial condition for $; = 0.7,  

= 0.2. As expected, the amplitude of the porosity waves increases and their speed 
decreases as the porosity trajectories diverge. This example indicates that while 
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melting decreases the amplitude of solitary waves, the process may be reversible and 
freezing can actually amplify small perturbations in the flux. If freezing continues to 
the point where the matrix becomes impermeable + O ,  E ,  cc 4), then the waves 
will grow until the matrix disaggregates or other forms of transport, such as crack 
formation, become important. This example demonstrates the effects of freezing 
when it occurs over many compaction lengths. When freezing occurs on a lengthscale 
comparable to the compaction length, i t  can also cause high-porosity channels to 
form (Sparks & Parmentier 1991 ; Spiegelman 1990, 1991). These channels arise from 
the obstruction in flux caused by the frozen impermeable boundary. The channels are 
similar to the solitary waves in cross-section and develop into a rank-order set of 
channels tha t  spread out from the freezing boundary. The only significant difference 
between these channels and the wavetrains shown here is that the channels do not 
propagate int,o the freezing region. 

5 .  Discussion 
The purpose of these model problems is to demonstrate and quantify how viscous 

resistance of the matrix to volume changes modifies the simple shock solutions 
predicted using the zero-compaction-length approximation. The initial response of 
the elliptic term is to cause fluid to accumulate in local porosity maxima near 
obstructions in the flux. These porosity maxima, however, appear to drain fluid from 
the region surrounding them, producing new obstructions that excite the formation 
of additional porosity waves. Thus, while viscous resistance is initially significant 
only in narrow boundary layers, the growth of the solitary waves allows information 
to propagate many compaction lengths away from the original obstruction. For some 
initial conditions, it  was shown that information can propagate backwards relative 
to the matrix even though both the fluid and porosity propagate forwards. The 
equations governing volume changes of the matrix are extremely time dependent 
and any perturbation t o  steady-state solutions is likely to shed solitary waves. For 
the problems shown here, there is a clear correspondence between the magnitude of 
the obstruction in the flux and the amplitude of the solitary waves that are produced. 
Large obstructions produce large-amplitude slow-moving wavetrains while smaller 
obstructions produce small-amplitude wavetrains. When mass transfer between solid 
and liquid is included, the solitary waves are no longer of permanent form ; however, 
melting and freezing do not change the quantitative relationship between the 
amplitude of the predicted shock and the amplitude of the solitary waves that are 
produced. The general conclusion of this work is that viscous resistance to volume 
changes must be included for an accurate description of flow in viscously deformable 
porous media. As with many elliptic equations, a small compaction length does not 
imply a negligible compaction term. 

For clarity, accuracy and ease of analysis, this paper has considered only one- 
dimensional problems in the limit of small porosity where the permeability exponent 
is n = 3. While relaxing these conditions will change the quantitative results and 
allow for new processes such as matrix convection, the results presented here and in 
Part 1 suggest that the general correspondence between the prediction of shocks and 
the production of solitary waves should carry through to more complicated 
problems. Spiegelman (1989) considers the evolution of porosity steps when the 
permeability exponent is n = 2, and produces results that are qualitatively identical 
to  the problem with n = 3. The porosity waves, however, travel a t  the speed of the 
n = 2 solitary waves. Preliminary results using a permeability exponent of n = 1 also 
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FIGURE 11. Evolution of a two-dimensional region of excess porosity that) is inclined at  45". This 
initial condition disperses into approximately three rank-ordered two-dimensional solitary waves 
and a small-amplitude dispersive background. Unlike the one-dimensional problems, here the 
permeability exponent n = 2 .  Initial amplitude A = 1.5 times the background porosity (dim- 
ensionless q5 = 1). Cont.our int,erval for porosity is 0.04. Lighter grey shades indicate excess porosity 
($ > 1 ) .  $ < 1 in darker regions. The box size iR 100 x 100 compaction lengths (200 x 200 grid) but 
the compaction length is scaled to  the minimum baakground porosity. Figures are shown in a 
moving frame (V,  = 2. lk) .  

break up  into porosity extrema; however, the waves are no longer of permanent form 
as there iw no nonlinear steepening twin to  balance the visoous dispersion. Figure 11 
shows the evolution of a local two-dimensional region of excess porosity for a 
problem with permeability k ,  cc $2. This initial condition disperses into three 
cylindrically symmetric two-dimensional solitary waves and a dispersive tail. 
Solitary wave solutions have been shown to exist in all dimensions (Scott> & 
Stevenson 1986; Barcilon & Lovera 1989) and the viscous resistance term must be 
responsible for the permanent form of the solitary waves. Otherwise, the waves 
would continue to steepen into shocks. As the zero-compaction-length approximation 
allows for shock solutions in all dimensions, it is tempting to  speculate that, in 
general, any initial condition that predicts shocks in the zero-compaction-length 
approximation will produce solitary waves in the full equations. 

3 F L Y  247 
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If the relationship between shocks and solitary waves holds for more complicated 
problems then the zero-compaction-length approximation becomes a straightforward 
test for determining if, when and where solitary waves should form. By extending the 
parameterization between the amplitudes of shocks and solitary waves, it  may also 
be possible to estimate which waves will be produced. Accurate numerical resolution 
of the waves, however, requires that  the smallest compaction length in the 
obst)ruction is adequately resolved. This resolution requirement places strong limits 
on the problems that are presently numerically feasible (as an example, figure 3a 

= 0.2) requires 6000 grid points in one dimension). In addition, some care must 
be taken in the choice of initial and boundary conditions. Because of the strong time 
dependence of these equations and the potential for some solutions to have no steady 
solution, the choice of initial condition is critical. Nevertheless the zero-compaction- 
length approximation provides a framework for predicting and interpreting time- 
dependent problems. This approximation has already proved useful for gaining 
insight into the possible processes occurring in natural viscous two-phase systems 
and suggests that processes such as magma migration should be inherently episodic 
in space and time. 

Many thanks to Dan McKenzie and Herbert Huppert for useful discussions and to 
two anonymous reviewers who provided detailed and constructive comments. 
Thanks also to John Hopper for detailed proofreading. Much of this work was 
conducted under a Marshall Scholarship at Cambridge and under a Lamont Post- 
Docatoral fellowship. This work is Lamont-Doherty Geological Observatory con- 
tribution nos. 5001 (Part 1) and 5002 (Part 2). 

Appendix A. Numerical methods : accuracy and resolution criteria 
Proper resolution of the solitary waves requires that the compaction rate is well 

resolved in the region of small porosity preceding the wave. Quantitatively, this 
means using a grid spacing fine enough to  resolve the compaction length of the 
smallest porosity. This is justified by the analysis of $3.2 that shows that in the 
region of nearly uniform porosity preceding the wave, the compaction rate decays 
exponentially into the constant-porosity region with a lengthscale of 6,, the 
compaction length for 4 = I n  practice it was found that 5 grid points per smallest 
compaction length (Az = $9,) gave accurate solutions with a minimum of round-off 
error (see below). For stability and accuracy, the time step must satisfy the Courant 
condition 

At/Az < 1/cmaX, 

where c,,, is the phase speed of the fastest solitary wave. In  practice, 
At/Az = 1/(2cmax) was found to be adequate. 

The numerical schemes have been tested against the analytic solitary wave 
solution for n = 3, W, = 0, r = 0 in the small-4, approximation. Properties of these 
waves are given in Appendix B. For the code to be accurate, the solitary waves 
should travel without change of shape at a constant phase velocity. The code was 
tested for waves of amplitude 2. 5 and 10 times the homogeneous small background 
porosity. Each run was conducted for times sufficient for the wave to travel a t  least 
ten full wavelengths. 

Results of these tests are shown in figure 12. This figure shows the effects of 
changing the time step and grid spacing on waves of different amplitudes. These plots 
show the normalized error in amplitude and phase velocity with time. In  general, this 
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scheme is sufficiently accurate to resolve the first-order variations in amplitude and 
phase velocity demonstrated by the hspersive shock problem ($3). These schemes 
are not sensitive to the choice of time step and show a second-order improvement in 
accuracy with decreasing grid spacing as might be expected from centred 
differencing. Errors for poorly resolved waves (N = 2) increase rapidly as the 
amplitude of the wave increases; however, solutions with finer meshes are hardly 
affected. All model problems in this paper use 5 grid points per smallest compaction 
length (N = 6JAz = 4) and A t / ( c o  Az) = 0.5 (solid curves). Neglecting the initial 
discretization error, this choice of numerical parameters produce errors in amplitude 
that are less than 0.1 % and errors in phase velocity that are less than 0.2 %. This 
result should be compared to variations in amplitude of 10-40 % between individual 
waves produced in any given run of $3. 

Appendix B. Properties of solitary waves : srnalLq5, approximation 
The general derivation for solitary waves of permanent form and constant phase 

velocity in the small-$, approximation is given in Scott & Stevenson (1986) and 
Barcilon & Richter (1986). This appendix presents some additional properties of 
these waves. 

Using the notation of Barcilon & Richter, f is the dimensionless porosity scaled t o  
the value of the background porosity (i.e. f = 1 is q5 = in the shock experiments) 
and 6 = z - ct is the distance coordinate in a frame moving at constant speed c. In this 
frame the compaction rate satisfies %? = -cf’  (primes denote differentiation with 
respect to 5) and can be written as a function of porosity as 

c - 1  
(n- 1) ( n - 2 )  n -2  n-1 

C - 2c 

f 
for n > 2, and 

for n = 2. For n = 3, (f - 1)2 can be factored out to  yield 

V 2  = ( - 2 c / f )  [ f 2  + (c-2) -cflnf- (c-  I)]  (R 2) 

The dispersion relation, c(A),  is found by requiring %(A) = 0, where A is the 
maximum porosity of the solitary wave. For n = 2 

c(A)  = (A - i)2/[A InA - (A  - I)]. 

c(A) = 2A + 1,  

(B 4) 

(B 5) For n = 3 

and for general integer n 2 3 

n-2 n-3 

1-0 j =O 
where Pn-2(f) = c ( j + W  Pn-,(f, = E ( n - 2 - W .  

Note for all n 3 2, c(1 ; n )  = n and therefore all waves travel at) least n-times faster 
than the background flux in the pores. 

The waveform f ( 6 ;  A ,  n) of a solitary wave is given implicitly by 
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FIGURE 13. Porosity (solid) and compaction rate (dashed) profiles for n = 3, A = 2-10. Critical 
points are shown by + . fv is the porosity where ‘3 has a maximum. f A  is the porosity where 
V” = 0 (f”’ = 0). The poroslty is symmetric about [ = 0. The compaction rate is antisymmetric m a  

w = --Cf’). 

For n = 3 this integral is analytic and yields upon integration 

)I- ( (A  - 1);- (A -f)i 1 6 = (A +# -2(A -j)i+--- 
( A  - 1); ( A  - l)%- (A - f )i c 

This solution is given by Barcilon & Richter (1986) and Richter & McKenzie (1984) 
and is plotted in figure 13 together with the compaction rate for n = 3 

(B 9) V(  f )  = (2C)Y- ( f  - (A -j)i. f 
Examination of figure 13 shows that there are several useful critical points for the 

solitary waves. Besides the obvious, f = A ,  % = O ,  there are the extrema of the 
compaction rate qmaX where V = 0. Using $? = - cf’ gives 

V’ = - ( l /  f “) [ f ” - C f  + c -  11 

J Lm=o J 

which has zeros at  f = 1 and the single real root of the polynomial in brackets. For 
n = 2  

and for n = 3 

vanishes. For general n this value is 

fwmax(4 = @)- 1, 

fvmax(A) = t[(  1 + 8A)f-  13. 

(B 11) 

(B 12) 
A useful measure of the wavelength of a solitary wave is the porosity for which v” 

fn(A ; n) = n(c- l)/c(n- 1). (B 13) 
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A 1 2 5 10 20 30 

V(.fwma , A ) /  V( 1 > A  1 0.8165 0.7365 0.8753 0.9331 0.9651 0.9764 
V f A ,  Ajl v 1 > A ) 0.8165 0.9302 0.9850 0.9958 0.9989 0.9995 

TABLE 1 .  Ratio of excess volume at f = .f;Pn,ax and f n  to total excess volume, V (  1, A : 3), n = 3 

The excess volume of a solitary wave between porosities f, and A is defined by 

V(j , ,A;n)  = 2 y ) ( f - l ) d [  
J o  

F o r n = 3  V ( f . A )  = 9[2(2A + 1)(A - f ) ] i [ 2 A  +f ] .  (B 15) 

The total excess volume of a solitary wave above the background porosity is 
V(  1 , A  ; n). Table 1 shows the fraction of total excess volume contained in the solitary 
waves forf, = f q m ,  andf, = f A  (n = 3). This table shows that V(fA,A ; 3) contains over 
90% of the excess volume for A 2 1.5. This result indicates t h a t  <(fJ is a 
good approximation to the half-wavelength of solitary waves. 

The separation flux of melt from the matrix is $ ( v -  V) = k,(V%?+ k). Substituting 
(I3 10) gives in one dimension 

$(w-W) = (l--C)+c$. (B 16) 

This result can also be derived directly by integrating the definition of the com- 
paction rate %? = - ($(w- W ) ) ,  = - c $ ~ .  Therefore, the melt, flux is #w = c# + (1 -c) 
in a frame fixed to the matrix or fw = (1 - c) in a frame moving with the solitary 
wave. This analysis is true regardless of the degree of nonlinearity n and shows 
that the solitary waves are the waveforms in which the melt flux becomes 
linear with porosity. Without the viscous compaction flux, k ,  gz, the separation flux 
equals the forced flux and is always nonlinear in 4. This nonlinearity produces shocks 
where the melt flux decreases in the direction of flow. 

Note also that in a frame moving with the waveform, the melt velocity, 
w = ( I  - c ) / f  is always negative. This is the velocity a t  which a completely incom- 
patible trace element would travel. Therefore porosity waves will not transport geo- 
chemical signatures indefinitely. Instead, they will pick up a signature, carry it 
forward and then leave it behind. 

Proof: no steady solutions for step boundary conditions n = 3. For n = 3 it is 
straightforward to show that there are no solutions of permanent form and constant 
phase velocity with the boundary conditions 

(I3 17) 

%z(z(co) = 0, %?z(-m) = 0, ) 
when the upstream porosity $u > 1. Assuming permanent form and using only the 
boundary condition at CO, the analysis is identical to that of the solitary waves up 
to (B 3). Equation (B 3) shows that, for n = 3 and fixed c 2 3, there are only two 
porosities where '3 vanishes. %? = 0 a t  f = 1 andf, = i ( c -  1 ) .  Similarly, (23 10) shows 
that W = 0 only for f = 1 and the single real root of f: +fo + 1 = c. Substituting 
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c = 2fo + 1 in this expression shows that the only porosities where both %? and %" 
can vanish are f, = 0 and f o  = 1.  This contradicts the assumption in (B 17) that 
f o  = 4, > 1 .  The proof for general n is the same b u t  requires showing that ifc is fixed, 
% and %' each have only one real root for f > 1. 
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